

Progress Report DoE Grant No: DE-FE0003859

Metal oxide sensing materials integrated with hightemperature optical sensor platforms for real-time fossil fuel gas composition analysis

Kevin P. Chen PI

Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261 Email: pec9@pitt.edu, Tel. 724-6128935

March 14, 2012

Program Overview

- University Coal Research Program
- Starting September 2010 (18-Months)
- Two Key Components:
 - Development of High-Temperature Sensor Platforms
 - Integration and Application of Functional Metal Oxide for Gas Sensing
- Three fiber sensor platform techniques
- Five journal publications
- Two industrial collaborations

Research Overview

- Point fiber sensor for high-T
 - High performance high-T FBG point sensor (>800C) at \$20/sensor
 - Chemical regenerative process
 - Integration with SnO₂ on D-Shaped fiber for NH₃ sensing
- Distributed fiber chemical sensor
 - First-ever demonstration of distributed fiber chemical sensing
 - Rayleigh-scattering OFDR technique
 - 1-cm spatial resolution
 - Integration with Pd/PdH for H₂ sensing
- Coherent Anti-Stokes Raman (CAR) sensor
 - One-laser pulse CARS measurement using temporal pulse shaping
 - Integration with hollow-core fiber
 - >1000 enhancement beyond spontaneous Raman
 - Aiming for CO_2 and C_2H_6 measurement

- Current State of the Art
 - Single-mode F-P interferometer on the fiber tip
 - Fiber Bragg grating in single-mode fiber by the ultrafast laser fabrication
- Challenge
 - Packaging is key (Expensive and difficult)
 - Poor spectral performance
 - Expensive

F-P Sensor

Dr. Wang's group at VT

Type IType IIType IIIRIRIR125 fs125 fs1.6 psgratinggratinggrating

1E-3

1547.5

1548.0

1548.5

1549.0

Wavelength (nm)

1550.0

1549.5

Technique: Chemical Regenerative Process

- Turn a dollar commercially off-shelf fiber Bragg grating (\$20) into a high-temperature sensors beyond 800C.
- Extended this process to air-hole microstructural fibers, expand capability of fiber sensor beyond only temperature or strain measurements.
 - Specially laser fabrication equipment for high-T grating fabrication <u>no</u> <u>longer needed!</u>
 - Cost of high-T sensors could come down drastically!
 - Parameters that sensor can measure drastically expanded (due to the air-hole microstructural fibers.

Process: Chemical Regenerative Process

- A Strong Type I FBG in optical fiber by UV laser.
- Rapid thermal annealing to anneal UV-induced defect.
 - Customer furnace development
- Stress induced on the fiber core-cladding interface during defect erasure.

Process: Chemical Regenerative Process

High-T Thermal Drift: 0.013 K/hour (Best case) 0.045 K/hour (Worse)

Regenerated Grating in Twin-hole Fiber

Pressure Test

Pressure Testing

FEA Simulation

Regenerated Grating in Twin-hole Fiber

Ultrafast Laser FBG Regenerative FBG ----P1 1.0 Normalized Intensity (a.u.) ····· P2 room pressure - Unpolarized 2400 psi -NORM P1+P2 0.8 Peak Intensity (a.u.) o-peak 0.1 e-peak 0.6 0.4 0.01 0.2 1E-3 0.0 1560.0 1560.5 1561.0 1561.5 1562.0 1557.4 1557.8 1558.0 1557.2 1557.6 1558.2 Wavelength (nm) Wavelength (nm) Simultaneous Measurement of T and P 1

$$\begin{pmatrix} \Delta\lambda_o \\ \Delta\lambda_e \end{pmatrix} = 1.532 \times 10^{-2} \Delta T + \begin{pmatrix} 2.521 \times 10^{-4} - 9.185 \times 10^{-8} \Delta T \\ 3.526 \times 10^{-4} - 1.232 \times 10^{-7} \Delta T \end{pmatrix} \Delta P$$

$$\Delta \lambda_{o,e} = \lambda - 1545.25 nm$$

 $\Delta T = T - 0^{\circ}C$

 $\Delta P = P - 0 psi$

High-T Chemical Sensing

5ppm Ammonia Testing

- Oxide-coated FBG stable up to 800C
- Metal Oxide Coating: TiO₂, SnO₂, ZnO₂
- Gas under tests: NH₃
- Testing Range: <1 ppm
- Oxide coating need optimization
- NETL Collaborator: Paul Ohodnicki

Progress Update: high T FBG sensors

- Success in sensor platform development
 - FBG sensors with superior spectral characteristics at high T
 - Demonstrate high-T stable FBG sensor derived from standard single-mode fiber
 - Low cost
 - Potential commercialization
 - >1000C operation possible using silica-core fiber
- Successful fiber coating development
 - SnO_2 , TiO_2 , and ZnO_2
 - Integration with D-shaped fiber
 - Coated FBG successfully regenerated at 700C
- Fiber sensor testing
 - NH_3 , NO_x
 - Sensor response need optimization

- Current State of the Art
 - Brillouin Scattering OTDR
 - Sub-meter resolution
 - Limited to Temperature and Strain measurement (0.1C and 1 $\mu\epsilon$)
 - Long distance (up to km)
 - Rayleigh Scattering OFDR
 - mm- resolution
 - Limited to Temperature and Strain measurement (0.1C and 1 $\mu\epsilon$)
 - ~100 meter distance

Schematic illustration of Brillouin scattering and (b) Rayleigh scattering.

- Expand Rayleigh scattering distributed sensing beyond T measurement
- Active fiber sensing scheme for environmental adapability.
- Air-hole microstructural fiber for multi-parameter measurement
- Functional coating on-fiber for chemical sensing with –cm resolution

Rayleigh Scattering and OFDR

Rayleigh Scattering

 $\alpha (z)_{Rayleigh} = \frac{8\pi}{3\lambda^4} [n(z)^8 p^2] (kT_f)\beta$

OFDR Scheme

Fig. 3: Schematic sketch illustration of the OFDR operation principle [20].

 ✓ Optical Frequency Domain Reflectometry (Swept-Wavelength Interferometry) for Sub-mm spatial resolution over tens of meters

- ✓ In-fiber Rayleigh scattering highly sensitive to local perturbation
- ✓ All-temperature operation
- ✓ Further Functionality improvement possible
- Cost, Response Time, Cross Talk

Distributed Pressure Measurement

OFDR Measurement Results Two-Hole Fibers: 2000 psi

Fiber Length (mm)

OFDR Measurement Results Room Temperature

OFDR Measurement Results Two-Hole Fibers at 800C

Distributed Hydrogen Sensing

Sputtering Coating of Pd on fiber

Chemical Sensing: H2 sensing Case using FBG

Distributed Chemical Sensing

Heating of on-fiber Pd Coating to Speed up sensor performance

Distributed Sensor Response (10% hydrogen)

Progress Update: Distributed Sensing

- Distributed Fiber Sensing Beyond T and Strain Measurements
 - Demonstration of distributed pressure sensing
 - Demonstration of distributed chemical sensing
 - Spatial resolution of 1-cm achieved
 - High temperature capability demonstrated at 800C
 - >1000C operation possible (depends on fiber)
- Further development
 - Improve distributed chemical measurement distance > 1 km
 - Enhance sensitivity and response time
 - Expand distributed measurement species

Topic III: CARS Chemical Sensors

0	 150

• Current State-of-the-Art

- Spontaneous Raman spectroscopy in hollow core fibers
- Sensitivity enhancement by spatial confinement
- Gas exchange hampers the response time and sensitivity ("residual gas issue")

Coherence Anti-Stokes Raman

- Enhance signal up to 10^5
- Reduce the length of hollow-core fiber from ~ meter to ~ cm
- Single-beam CARS for easy optical measurement
- Use of broadband ultrafast lasers for multi-gas measurement

Single Beam CARS

- Eliminate the need of alignment of multiple beams
- No need for accurate timedelay control
- Broadband spectrum provide wide range of available resonant energy levels.
- Single-shot multiplexible measurements
- Combine with hollow-core fiber spatial confinement for ultimate enhancement

Broadband Laser Development

- Ti:Sapphire laser
- Chirped mirror technology
- Laser Bandwidth 1100 cm⁻¹
- Pulse duration down to ~10 fs

Experimental Setup

Toluene CARS

- Spatial light modulator pulse shaper
- Background-free detection
- PCF as gas cell
- Intended Gas: CO₂ and C₃H₈

Experimental Setup

- Spontaneous Raman: 200-mW, 776-nm single wavelength, 10s integration.
- CARS: 20 mW (70 nm bandwidth, 0.3 s integration)
- Hollow core scheme see 150 time enhancement on CARS signal

Progress Update: Raman

- CARS in hollow core fibers
 - Successful development of custom ultrafast laser with wide bandwidth
 - Complete construction of gas sensing set up
 - Confirmed signal enhancement using CARS vs. spontaneous process
 - Confirmed CARS signal enhanced by hollow-core fibers
- Further development (in this program)
 - Optimization of phase match condition inside PCF
 - Complete all gas measurement (CO_2 and C_3H_8)
 - Data process